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ON THE CONTROL OF A RIGID BODY’S TRIAXIAL ORIENTATION IN THE PRESENCE 

OF CONSTRAINTS ON THE CONTROLS* 

D.V. LEBEDEV 

The problem of controlling the triaxial orientation is investigated forarigidbody 
with an arbitrary mass geometry in the case when the constraints on the components 
of the controlling moment which is a linear combination of independent vectors are 
specified in implicit form. Two control problems are examined: the time-optimal 
(quick-acting) control problem for the reorientation of a rigid body and the design 
problem for a control guaranteeing the asymptotic stability of the body'smotionmode 
being investigated. Analogous problems of the control of a rigid body's motionwere 
investigated, in particular, in /l-33/. 

1. Statement of the problem. We introduce two right-handed orthogonal coordinate 
systems: an inertial system kc and a system xyz rigidly fixed to the 
the general case, do not coincide with the system of principal central 
rigid body. Describing the rotational motion of the body by the Euler 

Jw'+o x Jo=M, ~={a~, a+,, o,} 

we define the structure of the controlling moment M with domain G by 
m 

body; whose axes, in 
axes of inertia of the 
dynamic equations 

the relation 

(1.11 

M=i~IuJ$; G={u: Iu+l<u,, i=l, . . . ,m}, u,==const (1.2) 

Here Mi are linearly-independent vectors stationary in the xyz system; the scalars uiarethe 
controls. If the relative position of the bases Eqc and xyz is characterized by the quater- 
nion A = {h,, hr, h,, h,} whose components are the Rodrigues-Hamilton parameters, then the time 
variation of A obeys the equation /4/ 

2A'=A0@ (1.3) 

When the trihedrons En5 and xyz coincide 

A = A* = {+I, 0, O,O} 

Problem 1. In domain G of (1.2) design a time-optimal control leading the body from 
the initial state 

A@,)=&, o(to)=O (1.4) 

to the position 

A(T)=A,, o(T)=0 (1.5) 

Problem 2. Having information available on the orientation parameters A and on the 
angular velocity o, design a controlling moment M ensuring the asymptotic stability of the 
triaxial orientation mode (1.5). 

2. Largest value of the controlling moment relative to a prescribed direc- 
tion. In the trihedral zyz rigidly attached to the body let there be prescribed a certain n- 
direction with unit vector n = {a,p, y). It will be shown below that for solving the problems 
posed we need to know the largest value M, =I1 MI\ of the controlling moment relative to the 

prescribed n-direction. The quantity M,is determined from the relations 

M,=~II~L(u), L(u)=n'M (2.1) 

under the condition 

Mxn=O (2.2) 
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For m>3 the problem of seeking the largest value of the controll.ing moment rd.atiVe to the 

prescribed n-direction reduces to a linear programming problem. The rank of the system of 
constraints (2.2) equals two; therefore, at least m-2 of the controls u*(i=i,...m) take 

boundary values. 
In order to study the structure of the resulting solution we restrict ourselves (without 

loss of generality) to the case when m = 4. As the vectors Mi (i = 1, , . ., -4) stationary in sys- 
tem zyz we consider the following aggregates of them: 

Ml= {m,, -_mv, --mA M, = (m,,q,, -ml 
Ma = {--m,, -m,,, -mz), I% = {-m,, m,,-m,) 

The simplex method yields six groups of optimal solutions each of which is valid in a specific 
domain of positions of vector n; the set 

N=(n:a~+~*+y~=i} (2.3) 

of orientations of the unit vector II in the basis xyz can be represented as 

N=biV, 
v=I 

If we introduce the notation 

(here and later symbols of type (1 2 3,a6y,zyz) signify that the relations not written out are 
obtained by a circular permutation of the letters and indices indicated), then the subsets 
N,(Y = 1,...,6) are defined by the expressions 

N4== n: u6<0, IyI<mmin 2 I al, 2 WI)} (456, e6n ~2) 

while the quantity&g, and the values i+*(i = I,..., 4) Of the control realizing it in the sub- 
sets mentioned are found from the formulas 

We note that when m = 3 the linear form L(u) can be given as a function of one variable and 
the search for M,presents no difficulties. For example, for 

MI = 1% 0, % M* = (0, %, 01, M, = (0, 0. %) 
the set (2.3) is the union of the three subsets 

N=N~lJNBIJNY 

N,= n:la]&mmax 
i ( 

+I* 2 I Y I)) WY, w3 

each of which has its Own solution. Thus, for n fs iv,WY) 
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3. Time-optimal. control of 
optimal space turn of the rigid body 
has been considered, for example, in 
components of the controlling moment 

rigid body reorientation. The problem of a time- 
by one turn around a fixed axis (the Euler rotation axis) 

/l/. In contrast to /l/, where the constraints on the 
vector are known in advance, in the case we are examining 

these constraints are not known in advance and are determined by the orientation of the axis 
of final rotation in the basis rigidly attached to the rigid body. Let the orientationofthe 
Euler rotation axis in the coordinate txihedron xyz be characterized by the direction cosines 

c** B** Y** If the controlling moment M is formed such that it is colinear with the final 
rckation axis, then, introducing a new control by the formula 

U=J_~fJwxw+M) 

we reduce the Eq.Cl.1) of rotational motion of the rigid body 

c"=n,'U=U,, n,={a,,&, y*) 
(a'== n*'o, 1 U,] <u,, lJo=const) 

(3.1) 

to the form 

13.2) 

The problem is reduced to the construction of an algorithm for the time-optimal control lead- 
ing the body from the initial state 

o(t,) = co, a'(t()) = 0 
to the final position 

o(T) = o'(T) = 0 

Since a one-to-one correspondence exists between the final turn vector and the Rodrigues- 
Hamilton parameters, by knowing the orientation of the parameters h,,hr,$,I, at the beginning 
instant of the process it is not difficult to determine the unit vector n, of the Euler axis 
and the angle rJ0 by which the rigid body must be turned for the bases &jc and X@ tocoincide. 
As a matter of fact, from the relations 

h,(to)= COS 9, hl(to)- a, sin $ t Aa(t sin + , &(t~)= y* sin 3 (3.3) 

it follows that 

~*=(,*y,,,)~ i = 1, 2, 3; crO== 2 arccoshO(to) (3.4) 

Pontriagin'smaximumprinciple yields the following structure of the time-optimal orientation 
control algorithm: 

u, = tp fc, c')U, (3.5) 

tp(o, 0') = 
i 

1 for a<:~, and o---c*, s5'<0 (3.6) 
--1 for a>o* and s=ab*, o'>O 

(5* = - 15'1 a'/fZU(J (3.7) 

For the specified space turn of the body we find the maximum admissible value of u,. The 
equality 

U=n,U,=rp(a,d)Uonn; (3.8) 

(u= an,, a'* = 2U, 10 I 

holds for the control relative to the final turn vectors. From relation (3.1), withdue regard 

to (3.8), we obtain the expression for the controlling moment 

M r= cp (CT, a') UJn, - @Jn, x II, (3.3) 

Since the largest value of the gyroscopic moment ddJo,Xn, is reached at the control switch- 

ing instant and does not change as the function q(a,a') changes, we compute the vector Mat 

the instant of hitting onto the switching line (3.7) when 'p = 1 and cp = -*. Takingintoac- 

count that when a'(&)= 0 the maximum value of the modulus of the angular velocity o* Of the 

rigid body's rotation around the Euler axis equals 

I a'& = r/u, I cOi 
we have 
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M*=UO(~Jn*-~~ojJn, x n,) (3.10) 

We note that because of the orthogonality of vectors Jn, and Jn,~n, the vectors ki+ and M- 
are of the same length. However, their orientation in basis us, characterizable by the unit 
vectors n' and II- 

different: 
n-=n+- 2Jn,/m, 

Let the maximum values of the modulus of vector M relative to the n+- and m--directions, 
computed in accordance with Sect.2, equal M*'and Me", respectively. Then 

U, = min (M,+im,, K/m,) (3.12) 

THUS, for solving Problem 1 we first determine from expressions (3.4) and (3.10)-((3.12) the 
orientation in basis xvz of the Euler rotation axis, the turn angle a,, and the value of uo. 
During the orientation by formula a = 2arccos& we determine the current value of angle Uand 
we compute the required value of the controlling moment 

M=g,{a,d)U,Jn,--J~oxo 

and its orientation in the attached coordinate system s@, characterizable by the unit vector 

n= {&/II M II, M,/I[M iI> JfzIll M: II, 
Further, relative to the n-direction we find the largest value MM,of the control vector and 
the corresponding values of ut'(i=l,. . .,m). The desired values of controls Ui(i = 1,. . I ,m) 
are determined by the relations 

Ui = P&O, !J= lIMIl/M, 

4. Asymptotic stability of the triaxial orientation mode. To solve Problem 2 
we introduce the positive definite function 

2v = d,(A) + O’Jlo, a > 0 (4.1) 

vanishing at the equilibrium position (1.5) of system (l.l), (1.3). As vI((n)we can choose, 
for example, the function /4,5/ V,(A) = 2(1 -kos) or V,(A)= 4(1 - I ho 1). The controlling mom- 
ent M obtained from Liapunov theory with the aid of (4.1) can be represented as a sum of two 
SUUUllai-ldS 

M=&(At+Ma(@ 

We agree to choose the weighting coefficient a in (4.1) such that 

M,(A)cz~~={IW UEG) 
for any orientation of the rigid body. The second component of the controlling moment is com- 
puted by the formula 

M,(a) = X&II, K < 0 

where X* is the largest value of parameter x from the range O<x<& for whichthecondition 

M=MI(A)+~,K~~M~ (4.2) 
is fulfi.J.l.ed. For such a controlling moment the derivative of Liapunov function (4.1) with 
respect to time is negative of constant sign 

v' =X*o'Ko 

The set S, = {A,~R,f0,~=0} does not contain whole trajectories of the system beingstudied; 
therefore,. 
0, 0 = O}, 

Eq.(4.2) (with an appropriate completion of its definition at point S, = {A, o:h, = 

mode /6/. 
if this is necessary) ensures the asymptotic stability of the triaxial orientation 

We remark that when seeking X* we use the procedure, proposed in Sect.2, of comput- 
ing the largest value of the controlling moment relative to the prescribed direction. 

5. Examples. For the case nr=4 we consider the process of time-optimal space turning 
of a rigid body from the initial state 

A(O) = (0.001; 0.3; 0.6; 0.741619), m(O) = 0 

to the oriented position (1.5). To the presented value of quaternion A(O) corresponds the 
final rotation axis whose direction cosines with the axes z,y and z equal OT, = 0.3, PI = 0.6, y* = 
0.741690 and the angle 0,=3.13959. Typical curves of the variation of the orientationparameters, 
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angular velocities and controls during the controled motion of the rigid body arc shown in 
Fig.1 (iii = q+). 

If algorithm (4.2) is used for the control of the rigid body's orientation,thenfor m=3 
the typical nature of the variation of the Rodrigues-Hamilton parameters, the angular veloc- 
ities and the controls during the transfer of the body from the state 

A (0) = (0.707; 0.3535; 0.4342; 0.432041) 
0% (0) = w* (0) = 0, q/ (0) = 0,5 c-1 

to the triaxial orientation mode can be seen on Fig.2. 

-0.8 

Fig.1 Fig.2 
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